Майнор Интеллектуальный анализ данных/Введение в анализ данных/ИАД 2 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(Полезные ссылки (Будут пополняться))
Строка 48: Строка 48:
 
# [http://www.machinelearning.ru/wiki/index.php?title=%D0%97%D0%B0%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0 MachineLearning.ru]
 
# [http://www.machinelearning.ru/wiki/index.php?title=%D0%97%D0%B0%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0 MachineLearning.ru]
 
# [https://www.kaggle.com/ Kaggle]
 
# [https://www.kaggle.com/ Kaggle]
 +
# [http://goto.msk.ru/hackathon/]
 
# [http://archive.ics.uci.edu/ml/ UCI Repo]
 
# [http://archive.ics.uci.edu/ml/ UCI Repo]
 
# [http://www.r2d3.us/visual-intro-to-machine-learning-part-1/ Visual Intro to ML]
 
# [http://www.r2d3.us/visual-intro-to-machine-learning-part-1/ Visual Intro to ML]

Версия 01:06, 18 января 2017

Майнор по Анализу Данных -- ИАД-2

На данной странице будут вывешиваться последние новости и материалы для семинарских занятий группы ИАД-2

Семинарист: Шестаков Андрей shestakoffandrey@gmail.com
При обращении по почте, начинайте тему письма со слов [Майнор ИАД-2 2017]

Страница курса

Анонимные комментарии, замечания и пожелания можно оставить здесь

Семинары

1) 18 Января 2017: Введение + Повторение Python - [IPython Notebook]


Домашние Задания

Soon..


Полезные ссылки (Будут пополняться)

Семинар 1 Pandas & Seaborn

  1. Pandas
  2. Pandas Cheat-Sheet
  3. Pandas Visualization
  4. Seaborn

Наборы данных

  1. Портал Открытых Данных РФ
  2. Funny Datasets
  3. Сборник Открытых Данных (!!!)
  4. Еще наборы данных

Python and etc.

  1. PEP-8 Code Style Guide Cheat-sheet
  2. Python Tutorials Point
  3. Matplotlib Tutorial
  4. Matrix Manipulation Cheat-sheet
  5. Ipython Notebook
  6. Beaker Notebook
  7. yhat Rodeo

Ресурсы и Книги

  1. James, Witten, Hastie, Tibshirani — An Introduction to Statistical Learning
  2. Bishop — Pattern Recognition and Machine Learning (первые главы)
  3. MachineLearning.ru
  4. Kaggle
  5. [1]
  6. UCI Repo
  7. Visual Intro to ML

Онлайн Курсы

  1. Andrew Ng's Course
  2. Introduction to ML
  3. Learning Data Science with Python
  4. Курс от ВШЭ
  5. Обзор МООС Курсов