Современные методы машинного обучения (курс майнора)/ИАД-8 — различия между версиями

Материал из Wiki - Факультет компьютерных наук
Перейти к: навигация, поиск
(Домашние задания)
(Семинары)
Строка 23: Строка 23:
  
 
10 ноября. ''Сверточные нейронные сети для классификации изображений''. [http://keras.io Keras].
 
10 ноября. ''Сверточные нейронные сети для классификации изображений''. [http://keras.io Keras].
 +
 +
17 ноября. ''Случайные величины и ЦПТ''. Ноутбуки: [https://github.com/cs-hse/ML_DM_HSE_minor/blob/master/module3_statistics_notebooks/seminar1_random_variables_intervals/1_Случайные_величины.ipynb 1], [https://github.com/cs-hse/ML_DM_HSE_minor/blob/master/module3_statistics_notebooks/seminar1_random_variables_intervals/2_Выборки.ipynb 2].
  
 
==Домашние задания==
 
==Домашние задания==

Версия 12:59, 17 ноября 2016

Семинарист: Влад Шахуро shahurik@ya.ru
В начало темы писем добавляйте [ИАД].

Таблица с оценками

Семинары

15 сентября. Метод опорных векторов. Ядра. notebook, конспект (Воронцов, §4.5)

22 сентября. Градиентный спуск. notebook, данные (Воронцов, §4.3)

29 сентября. Обработка данных. notebook.

6 октября. Бустинг. Конспект 1, 2. (A short introduction to boosting, Воронцов cтр. 2-9)

13 октября. Градиентный бустинг, метод Ньютона. (Конспект про метод Ньютона, стр. 1).

20 октября. Нейронные сети. (Воронцов, стр. 102-110)

27 октября. Семинара не было.

3 ноября. Коллоквиум. Ауд. 3231, 12:30.

10 ноября. Сверточные нейронные сети для классификации изображений. Keras.

17 ноября. Случайные величины и ЦПТ. Ноутбуки: 1, 2.

Домашние задания

ДЗ1. SVM и ядровые функции. Формулировка и данные. Срок сдачи: 30 сентября.

ЛР1. Градиентный спуск. (см. семинар 22 сентября). Срок сдачи: 30 сентября.

ДЗ2. Предобработка данных и бустинг. Формулировка и данные. Срок сдачи: 23 октября.

Соревнование. Формулировка и критерии оценивания. Срок сдачи: 23 ноября.

ДЗ3. Центральная предельная теорема. Формулировка. Срок сдачи: 24 ноября.

Литература

Страница, текст и видео лекций К.В.Воронцова